J. Das, S.M. Alam and S. Bhanja, "Low Power Magnetic Quantum Cellular Automata Realization Using Magnetic Multi-Layer Structures", in IEEE Journal of Emerging Technologies CAS, June 2011 (Invited Paper).
Abstract: In this paper, we report Magnetic Quantum Cellular Automata (MQCA) realization using multi-layer cells with tilted polarizer reference layer with a particular focus on the critical
need to shift towards the multi-layer cells as elemental entities from the conventional single-domain nanomagnets. We have reported a novel spin-transfer torque current induced clocking
scheme, theoretically derived the clocking current, and shown the reduction in power consumption achieved against the traditional mechanism of clocking using magnetic fields typically generated from overhead or underneath wires. We have modeled the multilayer
cell behavior in Verilog-A along with the underlying algorithm used in implementing the neighbor interaction between the cells. The paper reports the switching and clocking current magnitudes, their direction and the power consumption associated with switching and clocking operation. Finally, we present the simulation results from Verilog-A model of switching, clocking
and neighbor interaction. Low power consumption due to spin transfer torque current induced switching and clocking along with the reasonable Magneto-Resistance (MR) distinguishing the
two energy minimum states of the device, make these devices a promising candidate in MQCA realization.
No comments:
Post a Comment